Countable and Uncountable

DEFINITION: A set A is **countable** A is A or A is A

• countably infinite: $|A| = |\mathbb{Z}^+|$

EXAMPLE:

- $\mathbb{Z}^-, \mathbb{Z}^+, \mathbb{Z}, \mathbb{Q}^-, \mathbb{Q}^+, \mathbb{Q}, \mathbb{N}, \mathbb{N} \times \mathbb{N}$, are countable
- \mathbb{R}^- , \mathbb{R}^+ , \mathbb{R} , (0,1), [0,1], (0,1], [0,1), (a,b), [a,b] are uncountable

THEOREM: A set A is countably infinite iff its elements can be arranged as a sequence $a_1, a_2, ...$

- If A is countably infinite, then there is a bijection f: Z⁺ → A
 a_i = f(i) for every i = 1,2,3 ...
- If $A=\{a_1,a_2,\dots\}$, then the function $f\colon\mathbb{Z}^+\to A$ defined by $f(i)=a_i$ is a bijection

Countable and Uncountable

THEOREM: Let A be countably infinite, then any infinite subset $X \subseteq A$ is countable.

- Let $A = \{a_1, a_2, \dots\}$. Then $X = \{a_{i_1}, a_{i_2}, \dots\}$
 - *X* is countable

THEOREM: Let A be uncountable, then any set $X \supseteq A$ is uncountable.

If X is countable, then A is finite or countably infinite

THEOREM: If A, B are countably infinite, then so is $A \cup B$

- $A = \{a_1, a_2, a_3, \dots\}, B = \{b_1, b_2, b_3, \dots\}$
- $A \cup B = \{a_1, b_1, a_2, b_2, a_3, b_3, ...\}$ //no elements will be included twice
 - application: the set of irrational numbers is uncountable

THEOREM: If A, B are countably infinite, then so is $A \times B$

- $A = \{a_1, a_2, a_3, \dots\}, B = \{b_1, b_2, b_3, \dots\}$
- $A \times B = \{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_1, b_3), (a_2, b_2), (a_3, b_1), (a_1, b_4), \dots \}$

Schröder-Bernstein Theorem

QUESTION: How to compare the cardinality of sets in general?

- $|\mathbb{Z}^-| = |\mathbb{Z}^+| = |\mathbb{Z}| = |\mathbb{Q}^-| = |\mathbb{Q}^+| = |\mathbb{Q}| = |\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$
- $|\mathbb{R}^-| = |\mathbb{R}^+| = |\mathbb{R}| = |(0,1)| = |[0,1]| = |(0,1)| = |[0,1)|$
- $|\mathbb{Z}^+| \neq |(0,1)|$: hence, $|\mathbb{Z}^+| \neq |\mathbb{R}|$, and in fact $|\mathbb{Z}^+| < |\mathbb{R}|$
- $|\mathbb{Z}^+| < |\mathcal{P}(\mathbb{Z}^+)|$
- $|\mathbb{R}|$? $|\mathcal{P}(\mathbb{Z}^+)|$: which set has more elements?

THEOREM: If $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.

EXAMPLE: Show that |(0,1)| = |[0,1)|

- $|(0,1)| \le |[0,1)|$
 - $f:(0,1) \rightarrow [0,1)$ $x \rightarrow \frac{x}{2}$ is injective
- $|[0,1)| \le |(0,1)|$
 - $g: [0,1) \to (0,1)$ $x \to \frac{x}{4} + \frac{1}{2}$ is injective

Schröder-Bernstein Theorem

EXAMPLE:
$$|\mathcal{P}(\mathbb{Z}^+)| = |[0,1)| = (|\mathbb{R}|)$$

- $\bullet \quad |\mathcal{P}(\mathbb{Z}^+)| \le |[0,1)|$
 - $f: \mathcal{P}(\mathbb{Z}^+) \to [0,1)$ $\{a_1, a_2, \dots\} \mapsto 0. \dots 1_{a_1} \dots 1_{a_2} \dots$ is an injection.
- $|[0,1)| \le |\mathcal{P}(\mathbb{Z}^+)|$
 - $\forall x \in [0,1), x = 0, r_1 r_2 \cdots (r_1, r_2, \cdots \in \{0, \dots, 9\}, \text{no } \dot{9})$
 - $0 \leftrightarrow 0000, 1 \leftrightarrow 0001, \dots, 9 \leftrightarrow 1001$
 - x has a binary representation x = 0. $b_1 b_2 \cdots$
 - $f:[0,1) \to \mathcal{P}(\mathbb{Z}^+) \ x \mapsto \{i: i \in \mathbb{Z}^+ \land b_i = 1\}$ is an injection

THEOREM:
$$|\mathbb{Z}^+| < |\mathcal{P}(\mathbb{Z}^+)| = |[0,1)| = |(0,1)| = |\mathbb{R}|$$

$$\frac{\aleph_0}{c}$$

The continuum hypothesis $\mathbb{E}_{\mathbb{E} \not = \mathbb{E} \times \mathbb{E} \times \mathbb{E} \times \mathbb{E} \times \mathbb{E}}$. There is no cardinal number between \aleph_0 and c, i.e., there is no set A such that $\aleph_0 < |A| < c$.

Combinatorics

Enumerative combinatorics

 permutations, combinations, partitions of integers, generating functions, combinatorial identities, inequalities

Designs and configurations

 block designs, triple systems, Latin squares, orthogonal arrays, configurations, packing, covering, tiling

Graph theory

graphs, trees, planarity, coloring, paths, cycles,

Extremal combinatorics

extremal set theory, probabilistic method......

Algebraic combinatorics

symmetric functions, group, algebra, representation, group actions......

Parenthesization

PROBLEM: Let $a_1, a_2, ..., a_n, a_{n+1}$ be n+1 numbers. Let * be any binary operator. Let C_n be the number of different ways of parenthesizing

$$a_1 * a_2 * \cdots * a_n * a_{n+1}$$

such that the calculation is not ambiguous. What is C_n ?

- n = 4: there are 5 different ways
 - $((a_1 * a_2) * a_3) * a_4$
 - $(a_1 * a_2) * (a_3 * a_4)$
 - $(a_1 * (a_2 * a_3)) * a_4$
 - $a_1 * ((a_2 * a_3) * a_4)$
 - $a_1 * (a_2 * (a_3 * a_4))$
- n = 100?

Combinatorial
Counting
Techniques
Required

Basic Rules of Counting

DEFINITION: Let A be a finite set. A **partition**_{ND} of set A is a family $\{A_1, A_2, ..., A_k\}$ of nonempty subsets of A such that

- $\bigcup_{i=1}^k A_i = A$ and
- $A_i \cap A_j = \emptyset$ for all $i, j \in [k]$ with $i \neq j$.
- The Sum Rule_{mæß, m}: Let A be a finite set. Let $\{A_1, A_2, \dots, A_k\}$ be a partition of A. Then $|A| = |A_1| + |A_2| + \dots + |A_k|$.
 - Suppose that a task can be done in one of n_1 ways, in one of n_2 ways, . . . , or in one of n_k ways, where none of the set of n_i ways of doing the task is the same as any of the set of n_j ways, for all pairs i and j with $1 \le i < j \le k$. Then the number of ways to do the task is $n_1 + n_2 + \dots + n_k$.

Basic Rules of Counting

The Product Rule_{\Re ARPM}: Let $A_1, A_2, ..., A_k$ be finite sets. Then

$$|A_1 \times A_2 \times \dots \times A_k| = |A_1| \times |A_2| \times \dots \times |A_k|. (*)$$

• Suppose that a procedure is carried out by performing the tasks $T_1, T_2, ..., T_k$ in sequence. If each task T_i (i=1,2,...,k) can be done in n_i ways, regardless of how the previous tasks were done, then there are $n_1n_2\cdots n_k$ ways to carry out the procedure.

EXAMPLE: # of composite divisors of $N = 2^{100} \times 3^{200} \times 5^{1000}$.

- $A = \{n \in \mathbb{Z}^+: n|N\}; |A| = 101 \times 201 \times 1001 //\text{product rule } n = 2^a 3^b 5^c$
- $A_1 = \{n \in A : n \text{ is prime}\}; A_2 = \{n \in A : n \text{ is composite}\}; A_3 = \{1\}$
 - $\{A_1, A_2, A_3\}$ is a partition of A.
 - $|A| = |A_1| + |A_2| + |A_3| \Rightarrow |A_2| = |A| |A_1| |A_3|$
 - $|A_1| = 3$, $|A_3| = 1$; $|A_2| = 101 \times 201 \times 1001 3 1 = 20321297$.

The Bijection Rule— $\neg M o B o B$, then |A| = |B|.

Permutations of Set

DEFINITION: Let A be a finite set of n elements. Let $r \in [n]$.

- r-permutationr-# π of A: a sequence a_1, a_2, \cdots, a_r of r distinct elements of A.
 - An n-permutation of A is simply called a **permutation** $_{\pm \hbar N}$ of A
 - Example: $A = \{1,2,3\}$
 - 2-Permutations of *A*: 1,2; 1,3; 2,1; 2,3; 3,1; 3,2
 - P(n,r): the number of different r-permutations of an n-element set

THEOREM: P(n,r) = n!/(n-r)! for all $n \in \mathbb{Z}^+$ and $r \in [n]$.

DEFINITION: Let A be a finite set of n elements.

- **r-permutation** of A with repetition: a sequence a_1 , a_2 , \cdots , a_r of r elements of A.
 - Example: $A = \{1,2,3\}$
 - 2-Permutations of *A* with repetition: 1,1; 1,2; 1,3; 2,1; 2,2; 2,3; 3,1; 3,2; 3,3

THEOREM: An n-element set has n^r different r-permutations with repetition.

Multiset

DEFINITION: A **multiset**_{\emptyset **a** is a collection of elements which are not necessarily different from each other.}

- An element $x \in A$ has **multiplicity**_{$x \notin A$} if it appears $x \in A$ times in the multiset $x \in A$.
- A multiset A is called an n-multiset_{n-\$ \pm \$ if it has n elements.}
- $A=\{n_1\cdot a_1,n_2\cdot a_2,\dots,n_k\cdot a_k\}$: an $(n_1+n_2+\dots+n_k)$ -multiset where the elements a_1,a_2,\dots,a_k has multiplicities n_1,n_2,\dots,n_k , respectively.
- $T = \{t_1 \cdot a_1, t_2 \cdot a_2, \dots, t_k \cdot a_k\}$ is called an r-subset of A if
 - $0 \le t_i \le n_i$ for every $i \in [k]$, and
 - $\bullet \quad t_1 + t_2 + \dots + t_k = r$

EXAMPLE: $A = \{1 \cdot a, 2 \cdot b, 3 \cdot c, 100 \cdot z\}, T = \{1 \cdot b, 98 \cdot z\}$

- A is a 106-multiset; the multiplicities of a, b, c, z are 1,2,3,100, respectively
- *T* is a 99-subset of *A*

Permutations of Multiset

DEFINITION: Let $A = \{n_1 \cdot a_1, n_2 \cdot a_2, \dots, n_k \cdot a_k\}$ be an n-multiset.

- **permutation of** A: a sequence x_1, x_2, \dots, x_n of n elements, where a_i appears exactly n_i times for every $i \in [k]$.
- r-permutation of A: a permutation of some r-subset of A
 - $A = \{1 \cdot a, 2 \cdot b, 3 \cdot c\}$
 - a, b, c, b, c, c is a permutation of A; bcb is a 3-permutation of A;
 - bcb is a permutation of the subset $\{2 \cdot b, 1 \cdot c\}$

REMARK: Let $A = \{a_1, a_2, ..., a_n\}$ be a set of n elements.

- For every $r \in [n]$, an r-permutation of A without repetition is an r-permutation of $\{1 \cdot a_1, 1 \cdot a_2, \dots, 1 \cdot a_n\}$.
- For every $r \ge 1$, an r-permutation of A with repetition is an r-permutation of $\{\infty \cdot a_1, \infty \cdot a_2, \dots, \infty \cdot a_n\}$.
- **THEOREM:** Let $A=\{n_1\cdot a_1,n_2\cdot a_2,\dots,n_k\cdot a_k\}$ be a multiset. Then A has exactly $\frac{(n_1+n_2+\dots+n_k)!}{n_1!n_2!\dots n_k!}$ permutations.

Shortest Path

DEFINITION: A $p \times q$ -grid is a collection of pq squares of side length 1, organized as a rectangle of side length p and q.

THEOREM: The number of shortest paths from (0,0) to (p,q) is $\frac{(p+q)!}{p!q!}$.

- Let $A = \{p \rightarrow, q \uparrow\}$ be a (p + q)-multiset.
- # of shortest paths=# of permutations of *A*.